Well, obviously, you might think, and so did I. But it turns out that some people claim that the alcohol (ethanol) in drinks isn't the only thing responsible for their effects - they say that acetaldehyde may be important, perhaps even more so.
South Korean researchers Kim et al report that it's acetaldehyde, rather than ethanol, which explains alcohol's immediate effects on cognitive and motor skills. During the metabolism of ethanol in the body, it's first converted into acetaldehyde, which then gets converted into acetate and excreted. Acetaldehyde build-up is popularly renowned as a cause of hangovers (although it's unclear how true this is), but could it also be involved in the acute effects?
Kim et al gave 24 male volunteers a range of doses of ethanol (in the form of vodka and orange juice). Half of them carried a genetic variant (ALDH2*2) which impairs the breakdown of acetaldehyde in the body. About 50% of people of East Asian origin, e.g. Koreans, carry this variant, which is rare in other parts of the world.
As expected, compared to the others, the ALDH2*2 carriers had much higher blood acetaldehyde levels after drinking alcohol, while there was little or no difference in their blood ethanol levels.
Interestingly, though, the ALDH2*2 group also showed much more impairment of cognitive and motor skills, such as reaction time or a simulated driving task. On most measures, the non-carriers showed very little effect of alcohol, while the carriers were strongly affected, especially at high doses. Blood acetaldehyde was more strongly correlated with poor performance than blood alcohol was.
So the authors concluded that:
Acetaldehyde might be more important than alcohol in determining the effects on human psychomotor function and skills.So is acetaldehyde to blame when you spend half an hour trying and failing to unlock your front door after a hard nights drinking? Should we be breathalyzing drivers for it? Maybe: this is an interesting finding, and there's quite a lot of animal evidence that acetaldehyde has acute sedative, hypnotic and amnesic effects, amongst others.
Still, there's another explanation for these results: maybe the ALDH2*2 carriers just weren't paying much attention to the tasks, because they felt ill, as ALDH2*2 carriers generally do after drinking, as a result of acetaldehyde build-up. No-one's going to be operating at peak performance if they're suffering the notorious flush reaction or "Asian glow", which includes skin flushing, nausea, headache, and increased pulse...
Kim SW, Bae KY, Shin HY, Kim JM, Shin IS, Youn T, Kim J, Kim JK, & Yoon JS (2009). The Role of Acetaldehyde in Human Psychomotor Function: A Double-Blind Placebo-Controlled Crossover Study. Biological psychiatry PMID: 19914598
No comments:
Post a Comment