MIT brain scanners Fedorenko et al present A new method for fMRI investigations of language: Defining ROIs functionally in individual subjects. Also on the list of authors is Nancy Kanwisher, one of the feared fMRI voodoo correlations posse.
The paper describes a technique for mapping out the "language areas" of the brain in individual people, not for their own sake, but as a way of improving other fMRI studies of language. That's important because while everyone's brain is organized roughly the same way, there are always individual differences in the shape, size and location of the different regions.
This is a problem for fMRI researchers. Suppose you scan 10 people and show them pictures of apples and pictures of pears. And suppose that apples activate the brain's Fruit Cortex much more strongly than pears. But unfortunately, the Fruit Cortex is a small area, and its location varies between people. In fact, in your 10 subjects, no-one's Fruit Cortex overlaps with anyone else's, even though everyone has one and they all work exactly the same way.
If you did this experiment you'd fail to find the effect of apples vs. pears, even though it's a strong effect, because there will be no one place in the brain where apples reliably cause more activation. What you need is a way of finding the Fruit Cortex in each person beforehand. What you'd need to do is a functional localization scan - say, showing people a big bowl of fruit - as a preliminary step.
Fedorenko et al scanned a bunch of people while doing a simple reading task, and compared that to a control condition, reading a random list of nonsense which makes no linguistic sense. As you can see, there's a lot of variation between people, but there's also clearly a basic pattern of activation: it looks a bit like a tilted "V" on the left side of the brain:
These are the language areas of each person. (Incidentally, this is why fMRI, despite its limitations, is an amazing technology. There is no better way of measuring this activation. EEG is cheaper but nowhere near as good at localizing activity; PET is close, but it's slow, expensive and involves injecting people with radioactivity.)
Fedorenko et al then overlapped all the individual images to produce of map of the brain showing how many people got activation in each part:
The most robust activations were on the left side of the brain, and they formed a nice "V" shape again. These are the areas which have long been known to be involved in language, so this is not surprising in itself.
Here's the clever bit: they then took the areas activated in a large % of people, and automatically divided them up into sub-regions; each of the "peaks" where an especially large proportion of subjects showed activation became a separate region.
This is on the assumption that these peaks represent parts of the brain with distinct functions - separate "language modules" as it were. But each module will be in a slightly different place in each person (see the first picture). So they overlapped the subdivisions with the individual activation blobs to get a set of individual functional zones they call Group-constrained Subject-Specific functional Regions of Interest, or GcSSfROIs to their friends.
Fedorenko et al claim various advantages to this technique, and present data showing that it produces nice results in independent subjects (i.e. not the ones they used to make the group map in the first place.)
In particular, they argue that it should allow future fMRI studies to have a better chance of finding the specific functions of each region. So far, experiments using fMRI to investigate language have largely failed to find activations specific to particular aspects of language like grammar, word meaning, etc. which is unexpected because patients suffering lesions to specific areas often do show very selective language problems.
Does this relate to the voodoo correlations issue? Indirectly, yes. The voodoo (non-independence error) problem arises when you do a large number of comparisons, and then focus on the "best" results, because these are likely to be wholly, or partially, only that good by chance.
Fedorenko et al's method allows you to avoid doing lots of comparisons in the first place. Instead of looking all over the whole brain for something interesting, you can first do a preliminary scan to map out where in each person's brain interesting stuff is likely to happen, and then focus on those bits in the real experiment.
There's still a multiple-comparisons problem: Fedorenko et al identified 16 candidate language areas per brain, and future studies could well provide more. But that's nothing compared to the 40,000 voxels in a typical whole-brain analysis. We'll have to wait and see if this technique proves useful in the real world, but it's an interesting idea...
Fedorenko, E., Hsieh, P., Nieto Castanon, A., Whitfield-Gabrieli, S., & Kanwisher, N. (2010). A new method for fMRI investigations of language: Defining ROIs functionally in individual subjects Journal of Neurophysiology DOI: 10.1152/jn.00032.2010
No comments:
Post a Comment