Wednesday, December 1, 2010

How To Fool A Lie Detector Brain Scan

Can fMRI scans be used to detect deception?

It would be nice, although a little scary, if they could. And there have been several reports of succesful trials under laboratory conditions. However, a new paper in Neuroimage reveals an easy way of tricking the technology: Lying In The Scanner.

The authors used a variant of the "guilty knowledge test" which was originally developed for use with EEG. Essentially, you show the subject a series of pictures or other stimui, one of which is somehow special; maybe it's a picture of the murder weapon or something else which a guilty person would recognise, but the innocent would not.

You then try to work out whether the subject's brain responds differently to the special target stimulus as opposed to all the other irrelevant ones. In this study, the stimuli were dates, and for the "guilty" volunteers, the "murder weapon" was their own birthday, a date which obviously has a lot of significance for them. For the "innocent" people, all the dates were random.

What happened? The scans were extremely good at telling the "guilty" from the "innocent" people - it managed a 100% accuracy with no false positive or false negatives. The image above shows the activation associated with the target stimulus (birthdays) over and above the control stimuli. In two seperate groups of volunteers, the blobs were extremely similar. So the technique does work in principle, which is nice.

But the countermeasures fooled it entirely, reducing accuracy to well below random chance. And the countermeasures were very simple: before the scan, subjects were taught to associate an action, a tiny movement of one of their fingers or toes, with some of the "irrelevant" dates. This, of course, made these dates personally relevant, just like the really relevant stimuli, so there was no difference between them, making the "guilty" appear "innocent".

Maybe it'll be possible in the future to tell the difference between brain responses to really significant stimuli as opposed to artifical ones, or at least, to work out whether or not someone is using this trick. Presumably, if there's a neural signiture for guilty knowledge, there's also one for trying to game the system. But as it stands, this is yet more evidence that lie detection using fMRI is by no means ready for use in the real world just yet...

ResearchBlogging.orgGanis G, Rosenfeld JP, Meixner J, Kievit RA, & Schendan HE (2010). Lying in the scanner: Covert countermeasures disrupt deception detection by functional magnetic resonance imaging. NeuroImage PMID: 21111834

No comments:

Post a Comment