The search for differences between the brains of men and women has a long and rather confusing history. Any structural differences are small, and their significance is controversial. The one rock-solid finding is that men's brains are slightly bigger on average. Then again, men are slightly bigger on average in general.
A new paper just out from Tomasi and Volkow (of cell-phones-affect-brain fame) offers, on the face of it, extremely strong evidence for a gender difference in the brain, not in structure but in function: Gender Differences in Brain Functional Connectivity Density.
Here's the headline pic:
They used resting-state "functional connectivity" (though see here for why this term may be misleading) fMRI in men and women. This essentially means that they put people in the MRI scanner, told them to just lie there and relax, and measured the degree to which activity in different parts of the brain was correlated to activity in every other part. They had a whopping 561 brains in total, though they didn't scan everyone themselves: they downloaded the data from here.
As you can see the results were highly consistent around the world. In both men and women, the main "connectivity hub" was an area called the ventral precuneus. This is interesting in itself although not a new finding as the precuneus has long been known to be involved in resting-state networks. However, the degree of connectivity was higher in women than in men 14% higher, in fact.
The method they used, which they've dubbed "Local Functional Connectivity Density Mapping", is apparantly a fast way of calculating the degree to which each part of the brain is functionally related to each other part.
You could do this by taking every single voxel and correlating it with every other voxel, for every single person, but this would take forever unless you had a supercomputer. LFCDM is, they say, a short-cut. I'm not really qualified to judge whether it's a valid one, but it looks solid.
Also, men's brains were on average bigger, but interestingly they show that women had, relative to brain size, more grey matter than men. Here's the data (I'm not sure about the color scheme...)
So what does the functional connectivity finding mean? It could mean anything, or nothing. You could interpret the highly interconnected female brain as an explanation for why women are more holistic, better at multi-tasking, and more in touch with their emotions than men with their fragmented faculties. Or whatever.
Or you could say, that that's sexist rubbish, and all this means is that men and women on average are thinking about different things when they lie in MRI scanners. We already know that resting-state functional connectivity centred on the precuneus is suppressed whenever your attention is directed towards an external "task".
That's not a fault of this research, which is excellent as far as it goes and certainly raises lots of interesting questions about functional connectivity. But we don't know what it means quite yet.
Tomasi D, & Volkow ND (2011). Gender differences in brain functional connectivity density. Human brain mapping PMID: 21425398
No comments:
Post a Comment